79 research outputs found

    Weather radar for urban hydrological applications: lessons learnt and research needs identified from 4 pilot catchments in North-West Europe

    Get PDF
    International audienceThis study investigates the impact of rainfall estimates of different spatial resolutions on the hydraulic outputs of the models of four of the EU RainGain project’s pilot locations (the Cranbrook catchment (UK), the Herent catchment (Belgium), the Morée-Sausset catchment (France) and the Kralingen District (The Netherlands)). Two storm events, one convective and one stratiform, measured by a polarimetric X-band radar located in Cabauw (The Netherlands) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to a spatial resolution of 1000 m. These estimates were then applied to the high-resolution semi-distributed hydraulic models of the four urban catchments, all of which have similar size (between 5 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. The response of the different catchments to rainfall inputs of varying spatial resolution is analysed in the light of model configuration, catchment and storm characteristics. Rather surprisingly, the results show that for the two events under consideration the spatial resolution (i.e. 100 m vs 1000 m) of rainfall inputs does not have a significant influence on the outputs of urban drainage models. The present study will soon be extended to more storms as well as model structures and resolutions, with the final aim of identifying critical spatial-temporal resolutions for urban catchment modelling in relation to catchment and storm event characteristics

    Multi-storm, multi-catchment investigation of rainfall spatial resolution requirements for urban hydrological applications

    Get PDF
    Rainfall estimates of the highest possible resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made over the last few decades in high resolution measurement of rainfall at urban scales and in the modelling of urban runoff processes, a number of questions as to the actual resolution requirements for input data and models remain to be answered. With the aim of answering some of these questions, this work investigates the impact of rainfall estimates of different spatial resolutions and structures on the hydraulic outputs of models of several urban catchments with different characteristics. For this purpose multiple storm events, including convective and stratiform ones, measured by a polarimetric X-band radar located in Cabauw (NL) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to coarser spatial resolutions of up to 1000 m. These estimates were then applied to the high-resolution semi distributed hydraulic models of four urban catchments of similar size (approx. 7 km2), but different morphological and land use characteristics; these are: the Herent catchment (Belgium), the Cranbrook catchment (UK), the Morée Sausset catchment (France) and the Kralingen District of Rotterdam (The Netherlands). When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. Moreover, the results were analysed considering different points at each catchment, while also taking into account the particular storm and catchment characteristics. The results obtained for the storms used in this study show that flat and less compact catchments (e.g. polder areas) may be more sensitive to the spatial resolution of rainfall estimates, as compared to catchments with higher slopes and compactness, which in general show little sensitivity to changes in spatial resolution. While this study provides interesting insights, further investigation is still required in order to obtain a more complete answer regarding rainfall resolution requirements for urban hydrological applications. Future work should include testing on higher resolution fully distributed hydro models, as well as the analysis of many more storm events

    Impacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporation

    Full text link
    Since the late 1990s, the Laurentian Great Lakes have experienced persistent low water levels and above average over‐lake evaporation rates. During the winter of 2013–2014, the lakes endured the most persistent, lowest temperatures and highest ice cover in recent history, fostering speculation that over‐lake evaporation rates might decrease and that water levels might rise. To address this speculation, we examined interseasonal relationships in Lake Michigan's thermal regime. We find pronounced relationships between winter conditions and subsequent fall heat content, modest relationships with fall surface temperature, but essentially no correlation with fall evaporation rates. Our findings suggest that the extreme winter conditions of 2013–2014 may have induced a shift in Lake Michigan's thermal regime and that this shift coincides with a recent (and ongoing) rise in Great Lakes water levels. If the shift persists, it could (assuming precipitation rates remain relatively constant) represent a return to thermal and hydrologic conditions not observed on Lake Michigan in over 15 years.Key PointsLake Michigan has been in an altered thermal regime since the late 1990sThe 2013–2014 winter may return Lake Michigan to pre‐1998 thermal conditionsHydrological impacts of the 2013–2014 cold winter remain unclearPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112001/1/grl52850.pd

    Sensitivity of urban drainage models to the spatial-temporal resolution of rainfall inputs: A multi-storm, multi-catchment investigation

    Get PDF
    Urban hydrological applications require high resolution precipitation and catchment information in order to well represent the spatial variability, fast runoff processes and short response times of urban catchments (Berne et al., 2004). Although fast progress has been made over the last few decades in high resolution measurement of rainfall at urban scales, including increasing use of weather radars, recent studies suggest that the resolution of the currently available rainfall estimates (typically 1 x 1 km2 in space and 5 min in time) may still be too coarse to meet the stringent requirements of urban hydrology (Gires et al., 2012). What is more, current evidence is still insufficient to provide a concrete answer regarding the added value of higher resolution rainfall estimates and actual rainfall input resolution requirements for urban hydrological applications. With the aim of providing further evidence in this regard, a collaborative study was conducted which investigated the impact of rainfall input resolutions on the outputs of the operational urban drainage models of four urban catchments in the UK and Belgium (Figure 1)

    The need for high resolution data to improve urban flood 1 risk assessment 2

    Get PDF
    Abstract 12 Cities are particularly vulnerable to rainfall-generated floods that are typically characterised 13 by their rapid onset and localised nature. This implies that precipitation and catchment 14 information need to be available at high resolution to reliably predict hydrological response 15 and potential flooding. On the contrary, urban areas constitute a major knowledge gap as most 16 flood risk studies have concentrated on natural basins and records of rain gauges and water 17 level gauges in cities are scarce. While increase in intense precipitation as a result of climate 18 change is expected in many areas around the world, it is at present not possible to assess how 19 this will affect urban pluvial flood risk. Collection of reliable, high resolution data in cities 20 needs to start urgently to build up datasets in support of urban flood risk assessment and to 21 enable detection of changes in flood risk whether these are induced by climate change, 22 urbanisation or other future developments. This study shows how implementation of 23 polarimetric X-band radar can contribute to filling the knowledge gap of flood risk 24 quantification in cities. 2

    Reversal of Status Dystonicus after Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia

    Get PDF
    Background: DYT6 dystonia can have an unpredictable clinical course and the result of deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi) is known to be less robust than in other forms of autosomal dominant dystonia. Patients who had previous stereotactic surgery with insufficient clinical benefit form a particular challenge with very limited other treatment options available. Case Report: A pediatric DYT6 patient unexpectedly deteriorated to status dystonicus 1 year after GPi DBS implantation with good initial clinical response. After repositioning the DBS electrodes the status dystonicus resolved. Discussion: This case study demonstrates that medication-resistant status dystonicus in DYT6 dystonia can be reversed by relocation of pallidal electrodes. This case highlights that repositioning of DBS electrodes may be considered in patients with status dystonicus, especially when the electrode position is not optimal, even after an initial clinical response to DBS
    corecore